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In many ways, cancer is simply a devastating 
natural mutagenesis experiment. Altera-
tions to genes and their products, as well as 
additional downstream modifications, lead 
to dangerous and deadly consequences. From 
recent studies, we know there are a few key 
cancer drivers, genes such as p53 and Ras that 
have central roles within the genetic pathways 
causing these devastating effects. But inter-
estingly, these mutations don’t show up in all 
cancers; in fact, they represent a small portion 
of the information that researchers and clini-
cians require to understand tumor biology and 
diagnose and treat disease. 

The result: cancer researchers are now 
focusing on the “long tail”, collecting and 
cataloging rare mutations occurring in 1% or 
fewer of cancer patients. These rarer mutations 
may underlie the critical functional changes 
within cells that characterize and define this 
collection of diseases. But there is a big challenge 
here, a double-edge sword for researchers: 
because of their rarity, it is actually much harder 
to distinguish these rare mutations from random 
mutations that don’t affect disease. 

Building network context
So, how then do researchers go about locating 
these important rare variants? The functional 
consequences of mutations in the genome 
can often be seen in the molecules, such 
as proteins, that they encode. Over time, 
bioinformatics researchers have learned how 
these biomolecules interact with each other 
in the cell, curating protein and metabolite 
connections into wiring diagrams with nodes 
for proteins or other molecules and edges 
that indicate an interaction with another 
molecule. This has led to the development 
of a landscape of bioinformatics methods 
for understanding the misfires that cause 
cancer and control the disease process 
according to Trey Ideker a bioinformatician, 
at the University of California at San Diego. 
Researchers gather systematic information on 
genetic interactions from genome sequencing 
that can then be combined with public data 
on protein-protein interactions, producing 
more comprehensive databases featuring 
millions of associations between molecules. 
The question then, Ideker says, is how 
researchers can take this grab bag of interac-
tions and introduce context to build pathway 
models that researchers can take advantage of 
to understand and diagnose disease.  

Even with millions of associations 
catalogued, these databases are far from complete. 
In many ways, our current understanding of inter-
action networks is like navigating through a major 
city with a general map explains Andrea Califano 
of Columbia University. “It’s like having a map 
of a city with Main St and Broadway and not 
actually knowing whether the city is New York 
or Boston.” 

Although understanding how proteins 
function together is critical for basic research, 
the real benefit could come from the diagnosis 
and treatment of disease. Here, cancer is the 
“killer app”—an important problem that 
motivates the need for networks. 

“It’s not just a good idea for solving these 
diseases, but required for solving these diseases,” 
says Ideker. So, as large data sets emerge from 
cancer genome sequencing projects such as the 
NIH/NHGRI’s Cancer Genome Atlas project 
(TCGA), bioinformatic analysis that integrates 
that information into the context of protein 
networks is essential for helping researchers to 
make sense of the deluge of cancer data.

Using networks for analysis
A primary motivation for the TCGA project 
was to understand the similarities and differ-
ences among various types and subtypes of 
human cancers. Researchers involved in the 
TCGA are currently looking at hundreds of 
samples from each of more than 20 tumor types 
to identify rare mutations involved in cancer. 

One bioinformatics approach to under-
standing the possible effects of specific 
rare mutations is to create a “heat map”—a 
graphical representation of mutations in 
context with nearby neighbors in a protein 
network. HotNet, an algorithm developed 
by Ben Raphael and his colleagues at Brown 
University, is one such algorithm. The idea is 
straightforward: mutations to a single gene 
confer a certain amount of “heat” to a pathway. 

If no nearby genes are mutated, only that 
single mutation is interesting to researchers. 
However, if 4 or 5 genes that are only 
mutated occasionally but are closely linked 
in the network, those mutations propagate 
heat among them creating a “hot zone”, and 
implicating that area of the network. “The idea 
behind all these approaches is to implicate 
your neighborhood,” explains Ideker. 

When Raphael and his colleagues used 
HotNet for their TGCA analysis of the 
ovarian cancer genome (1), they observed 
well-known signaling pathways such as p53 
and Ras. But they also pulled out the Notch 
signaling pathway based on a combination of 
individual, infrequently mutated genes. While 
other experimental evidence had suggested 
Notch might be involved in various cancers, 
Raphael emphasizes, it’s a nice example of how 
computational tools can help point researchers 
toward a biologically relevant hypothesis.

Other findings have implicated genes that 
were not so well known to researchers. TCGA 
analysis of ovarian and kidney cancer samples 
(2) identified hotspot genes that don’t line up 
with any current experimental hypotheses for 
cancer. “Are they real? Are they not? It requires 
some additional experimental work,” Raphael 
says. Even though the algorithm generates 
results that are consistent with experimental 
data, which lends credibility, “ultimately what 
we’re doing is generating hypotheses.”

These algorithms based on molecular 
networks could allow researchers classify 
tumors into subtypes based on overlapping 
hot zones. According to Ideker, patients might 
not have mutations in the same genes, but if 
they have mutations in genes that are closely 
connected within a network, that information 
might help researchers understand subtypes 
of the disease even if patients lack similar 
mutation profiles. 

A core issue for this type of analysis is 
how best to simplify available biochemical 
data into a form that takes into account 
biological function, allowing researchers to 
model the effects. The sheer amount of infor-
mation researchers have collected in curated 
networks (e.g., REACTOME, BioCarta, 
WikiPathways, KEGG, and NCI-PID) can be 
overwhelming, with data on gene expression, 
copy number, epigenetic state, neighbors in a 
pathway, transcription factors, and more notes 
Josh Stuart of the University of California 
Santa Cruz. Collaborating with David 
Haussler, also at UC Santa Cruz, Stuart has 

Unraveling cancer through network models

Andrea Califano says obtaining detailed reference maps for 
cells remains a challenge.  Image courtesy of Chris Williams.
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developed an algorithm called PARADIGM 
which takes all that available data on a gene 
and transforms it into a single number to 
indicate whether the gene is active in the cell 
or not (3).

Computers can then use those single 
values in place of the original data to come 
up with predictions of how genes work within 
a cell. For a cancer data set, this means predic-
tions can be made as to whether tumors with 
a particular genetic profile are likely to have 
better or worse outcomes or predict drug 
targets based on data from cell lines. 

Stuart’s algorithm is being used as part 
of the automated pipeline for TCGA data 
being funneled through Firehose, the compu-
tational pipeline used at the Broad Institute. 

Expanding networks
Although network analysis is improving, it is 
still hampered by the many protein-protein 
interactions within the cell that remain 
unmapped. (See “Biochemical identification of 
protein-protein interactions”) Here, Califano 
says, the major challenge for the field is getting 
detailed reference maps for cells, particularly 
those of different lineages where different 
regulatory processes occur. 

For the PARADIGM algorithm, Stuart 
and his colleagues are slowly adding new inter-
actions to the networks they use. A quarter 
of human proteins so far have been noted 
to regulate another gene or gene product in 
the curated networks,. Taking advantage 
of available high-throughput data, Stuart 
estimates that approximately 50% of proteins  
are included in the PARADIGM analysis 
networks. 

Other researchers are attempting to 
use computational methods to uncover 
undocumented protein-protein interac-
tions. Recently, Califano collaborated with 
Columbia biochemist Barry Honig to search 
for potential interactions between proteins 
using the tertiary structure of the proteins 
(4). That data alone is not context-specific, 

Calfano notes, so the researchers took 
advantage of additional data sets, such as gene 
expression analysis, to refine their findings. 
Using this approach, protein interactions in 
adenocarcinomas were analyzed. Although 
they’ve shown that it’s accurate, the method 
only shows some overlap with known interac-
tions. As a result, Califano says, “we know that 
there is a tremendous amount of work to do.” 

Even if researchers haven’t found the 
connections between particular proteins 
or genes from a known biochemical inter-
action, data patterns can help point to how 
genes might be connected. Here, the idea of 
mutual exclusivity can be a huge help. If two 
proteins interact to form an essential complex 
within a cell, mutations in one of the proteins 
could disrupt the complex, leading to disease. 
But in diseased cells you’ll rarely see mutations 
to both genes. Raphael and his colleagues have 
developed an algorithm called Dendrix (de 
novo driver exclusivity) to look for statis-
tical relationships in genomic data that could 
reflect these patterns. He has already used this 
algorithm with TCGA data for samples of 
acute myeloid leukemia, finding clear patterns 
of mutual exclusivity (5). And they are now 
analyzing data from other cancer types as well.

In addition to finding distinctive features 
and classifying tumor types, networks can 
also help researchers identify new patterns 
of mutations occuring in multiple cancers, 
similar to the BRCA1 and BRCA2 mutations 
that occur in both breast and ovarian tumors. 
These hotspots could suggest new targets for 
therapies that target multiple tumor types. 

Looming challenges
Tumor samples present unique challenges 
in network analysis. They are heteroge-
neous, cautions Lincoln Stein of the Ontario 
Institute for Cancer Research, producing yet 
another layer of biological complexity. 

A patient sample can include normal 
and tumor cells, with the tumor cells 

possessing multiple subtypes in some 
instances. Understanding that heterogeneity 
could be incredibly important for patients, 
Stein adds. In some cases tumors generate 
different subtypes from a common ancestor, 
while other tumors come from multiple 
independent tumor modules. Heterogeneity 
can affect the clinical outcome. For example, 
if a patient has one tumor subclone with an 
EGFR mutation but another subclone that 
doesn’t include that mutation, a targeted 
inhibitor might kill only some of the cells 
in the tumor. Computational methods can 
help researchers tease apart some of these 
complications, Stuart says, but biochemical 
techniques that produce data from single cells 
would provide cleaner data to start with.

For Ideker, moving network models into 
a healthcare setting remains a major priority 
as such networks would assist clinicians in 
making sense of the rare mutations that show 
up in their patients. “No one is unique. These 
mutations are hitting the same regions of the 
network.” And this is one time that it is good 
to be like everyone else. 
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Biochemical identification of protein-protein interactions
Researchers use a variety of assays to establish if two proteins interact. Two high-
throughput approaches to identifying interactions are yeast-2-hybrid screens and 
affinity purification-mass spectrometry. Researchers can also predict an interaction 
between two proteins if both proteins contain domains known to interact with one 
another. Researchers might also look at whether genes are co-expressed in a cell and 
whether they’re localized to the same cellular compartment. While those last two 
aren’t definitive evidence for an interaction, Stein says, they can provide support for 
an interaction predicted using another method. 

Each method comes with advantages and limitations. For example, though widely 
used, yeast 2 hybrid screens have several downsides. These screens probe interactions 
in an in vitro milieu of reagents and antibodies and may miss transient interactions or 
ones that involve membrane proteins. Not to mention that since this is an in vitro assay, 
the screen might pick up an interaction that wouldn’t normally occur in the cell. So, 
researchers are most confident in defining a protein-protein interaction when multiple 
lines of evidence from different experimental approaches support that it occurs. -SW

Trey Ideker works on developing protein network maps. Image 
provided by Stephanie Mirkin.


