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Abstract. Recent genome sequencing studies have shown that the so-
matic mutations that drive cancer development are distributed across a
large number of genes. This mutational heterogeneity complicates efforts
to distinguish functional mutations from sporadic, passenger mutations.
Since cancer mutations are hypothesized to target a relatively small num-
ber of cellular signaling and regulatory pathways, a common approach is
to assess whether known pathways are enriched for mutated genes. How-
ever, restricting attention to known pathways will not reveal novel cancer
genes or pathways. An alterative strategy is to examine mutated genes
in the context of genome-scale interaction networks that include both
well characterized pathways and additional gene interactions measured
through various approaches. We introduce a computational framework
for de novo identification of subnetworks in a large gene interaction net-
work that are mutated in a significant number of patients. This frame-
work includes two major features. First, we introduce a diffusion process
on the interaction network to define a local neighborhood of “influence”
for each mutated gene in the network. Second, we derive a two-stage mul-
tiple hypothesis test to bound the false discovery rate (FDR) associated
with the identified subnetworks. We test these algorithms on a large hu-
man protein-protein interaction network using mutation data from two
recent studies: glioblastoma samples from The Cancer Genome Atlas and
lung adenocarcinoma samples from the Tumor Sequencing Project. We
successfully recover pathways that are known to be important in these
cancers, such as the p53 pathway. We also identify additional pathways,
such as the Notch signaling pathway, that have been implicated in other
cancers but not previously reported as mutated in these samples. Our ap-
proach is the first, to our knowledge, to demonstrate a computationally
efficient strategy for de novo identification of statistically significant mu-
tated subnetworks. We anticipate that our approach will find increasing
use as cancer genome studies increase in size and scope.
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1 Introduction

Cancer is a disease that is largely driven by somatic mutations that accumulate
during the lifetime of an individual. Decades of experimental work have iden-
tified numerous cancer-promoting oncogenes and tumor suppressor genes that
are mutated in many types of cancer. Recent cancer genome sequencing studies
have dramatically expanded our knowledge about somatic mutations in cancer.
For example, large projects like The Cancer Genome Atlas (TCGA) [31], the
Tumor Sequencing Project (TSP) [8], and the Cancer Genome Anatomy Project
[11] have sequenced hundreds of protein coding genes in hundreds of patients
with a variety of cancers. Other efforts have taken a global survey of approxi-
mately 20,000 genes in a 1-2 dozen patients [40,18,32]. These studies have shown
that: tumors harbor on average approximately 80 somatic mutations; two tu-
mors rarely have the same complement of mutations; and thousands of genes
are mutated in cancer [40]. This mutational heterogeneity complicates efforts to
distinguish functional mutations from sporadic, passenger mutations. While a
few cancer genes are mutated at high frequency (e.g. well known cancer genes
like TP53 or KRAS), most cancer genes are mutated at much lower frequencies.
Thus, the observed frequency of mutation is an inadequate measure of the im-
portance of a gene, particularly with the relatively modest number of samples
that are tested in current cancer studies.

It is widely accepted that cancer is a disease of pathways and it is hypothesized
that somatic mutations target genes in a relatively small number of regulatory
and signaling networks [12,39]. Thus, the observed mutational heterogeneity is
explained by the fact that there are myriad combinations of alterations that
cancer cells can employ to perturb the behavior of these key pathways. The
unifying themes of cancer are thus not solely revealed by the individual mutated
genes, but by the interactions between these genes. Standard practice in cancer
sequencing studies is to assess whether genes that are mutated at sufficiently
high frequency significantly overlap known cancer pathways [31,8,36,40,32,25].

Finding significant overlap between mutated genes and genes that are mem-
bers of known pathways is an important validation of existing knowledge. How-
ever, restricting attention to these known pathways does not allow one to detect
novel group of genes that are members of less characterized pathways. More-
over, it is well known that there is crosstalk between different pathways [39]
and dividing genes into discrete pathway groupings limits the ability to detect
whether this crosstalk is itself a target of mutations. An additional source of
information about gene and protein interactions is large-scale interaction net-
works, such as the Human Protein Reference Database (HPRD) [22], STRING
[17], and others [2,34]. These resources incorporate both well-annotated path-
ways and interactions derived from high-throughput experiments, automated
literature mining, cross-species comparisons, and other computational predic-
tions. Many researchers have used these interaction networks to analyze gene
expression data. Ideker et al. [16] introduced a method to discover subnetworks
of differentially expressed genes, and this idea was later extended in different
directions by others [30,26,38,21,28,13,5].
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We propose to identify “significantly mutated subnetworks” – that is con-
nected subnetworks whose genes have more mutations than expected by chance
– de novo in a large gene interaction network. This problem differs from the
gene expression problem in that a relatively small number of genes might be
measured, a small subset of genes in a pathway may be mutated, and that a
single mutated gene may be sufficient to perturb a pathway. The näıve approach
to de novo identification of mutated subnetworks is to examine mutations on all
subnetworks, or all subnetworks of a fixed size. This approach is problematic.
First, the enumeration of all such subnetworks is prohibitive for subnetworks of
a reasonable size. Second, the extremely large number of hypotheses that are
tested makes it difficult to achieve statistical significance. Finally, biological in-
teraction networks typically have small diameter due to the presence of “hub”
genes of high degree. There are reports that cancer-associated genes have more
interaction partners than non-cancer genes [25,19], and indeed highly mutated
cancer genes like TP53 have high degree in most interaction networks (e.g. the
degree of TP53 in HPRD is 238). Such correlations might lead to a large number
of “uninteresting” subnetworks being deemed significant.

We propose a rigorous framework for de novo identification of significantly
mutated subnetworks and employ two strategies to overcome the difficulties de-
scribed above. First, we formulate an influence measure between pairs of genes
in the network using a diffusion process defined on the graph. This quantity
considers a gene to influence another gene if they are both close in distance on
the graph and there are relatively few paths between them in the interaction
network. We use this measure to build a smaller influence graph that includes
only the mutated genes but encodes the neighborhood information from the
larger network. We then identify significant subnetworks using two techniques.
The first one requires to solve an NP-hard problem, while in the second one, in
which the influence between pairs of genes is enhanced by the number of mu-
tations observed on these genes, the computational problem is reduced to just
finding connected components in the graph. Finally, we derive a two-stage multi-
ple hypothesis test that mitigates the testing of a large number of hypotheses by
focusing on the number of discovered subnetworks of a given size rather than on
individual subnetworks. We also show how to estimate the false discovery rate
(FDR) associated with this test.

We tested our approach on the HPRD human interaction network using
somatic mutation data from two recently published studies: (i) 601 genes in
91 glioblastoma multiforme patients from The Cancer Genome Atlas (TCGA)
project; (ii) 623 genes in 188 lung adenocarcinoma patients sequenced during
the Tumor Sequencing Project (TSP). In both datasets, we identify statistically
significant mutated subnetworks that are enriched for genes on pathways known
to be important in these cancers. Our approach is the first, to our knowledge,
to demonstrate a computationally efficient strategy for de novo identification of
statistically significant mutated subnetworks. We anticipate that our approach
will find increasing use as cancer genome studies increase in size and scope.
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2 Methods

In this section we introduce our approach for the identification of significantly
mutated pathways in cancer. Due to space constraints, the proofs of theorems
are omitted. Supplementary material including details of proofs is available at
http://www.cs.brown.edu/people/braphael/supplements/.

2.1 Mathematical Model

We model the interaction network by a graph G = (V, E), where the vertices in
V represent individual proteins (and their associated genes), and the edges in
E represent (pairwise) protein-protein or protein-DNA interactions. Let T ⊆ V
be the subset of genes that have been been tested, or assayed, for mutations
in a set S of samples (patients). The size of T will vary by study; e.g. some
recent works resequenced hundreds of genes [31,8] while others examine nearly
all known protein-coding genes in the human genome [40,18,32]. We assume that
each gene g is assigned one of two labels, mutated or normal, in each sample.
Let Mi denote the subset of genes in T that are mutated in the ith sample,
for i = 1, . . . |S|. Let Sj be the samples in which gene gj ∈ T is mutated, for
j = 1, . . . , |T |, let m =

∑
i |Mi| be the total number of occurrences of altered

genes observed in all samples.
We define a pathway or subnetwork to be a connected subgraph of G. Note

that this definition matches the common biological usage of the term where
pathways may have arbitrary topology in the graph, and are not restricted to
be linear chains of vertices. We generally do not know whether more than one
gene must be mutated to perturb a pathway in a sample, and thus will assume
that a pathway is mutated in a sample if any of the genes in the pathway are
mutated. For a subset T ⊆ T , let S(T ) denote the set of samples in which at
least one gene in T is mutated.

2.2 Influence Graph

Our goal is to identify subnetworks that are significant with respect to the set of
mutated genes in the samples. The significance of a subnetwork is derived from:
(i) the number of samples that have mutations in the genes of the subnetwork,
and (ii) the interactions between genes in the subnetwork in the context of the
whole network topology. For example, consider two possible scenarios of mutated
nodes (Figure 1). In the first scenario, the two mutated nodes are part of a linear
chain in the interaction network. In the second scenario, the two mutated nodes
are connected through a high-degree node. In the first scenario, there is a single
path joining the two mutated nodes and thus we are more surprised by this local
clustering of mutations than in the second scenario, where the two nodes are
connected by a node that is present in a large number of possible paths.

Hubs present an extreme case of this phenomenon and result in many “uninter-
esting” subnetworks being deemed significant. Since many highly mutated cancer
genes, like TP53, also have high degree in interaction networks it is not advisable
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to ignore these genes in the analysis of cancer mutation data. These examples
show that significance of a subnetwork is derived from both: 1. the number of
samples that have mutations in the genes of the subnetwork, and 2. the interac-
tions between genes in the subnetwork in the context of the whole network. A
straightforward graph distance like the shortest path between nodes is not suffi-
cient to overcome the problems highlighted above. Moreover, other graph mining
approaches like dense subgraph identification [10] are also not appropriate, since
not all subnetworks of interest (e.g. the chain in Figure 1) are dense in edges.

Fig. 1. Mutation on chain vs.
star graph

We use a diffusion process on the interaction net-
work to define a rigorous measure of influence
between all pairs of nodes. To measure the in-
fluence of node s on all the other nodes in the
graph, consider the following process, described
by [33]. Fluid is pumped into the source node s
at a constant rate, and fluid diffuses through the
graph along the edges. Fluid is lost from each node
at a constant first-order rate γ. Let fs

v (t) denote
the amount of fluid at node v at time t, and let
fs(t) = [fs

1 (t), . . . , fs
n(t)]T be the column vector

of fluid at all nodes. Let L be the Laplacian matrix of the graph1, and let
Lγ = L + γI. Then the dynamics of this continuous-time process are governed
by the vector equation dfs(t)

dt = −Lγfs(t) + bsu(t), where bs is the elementary
unit vector with 1 at the sth place and 0 otherwise, and u(t) is the unit step
function. As t → ∞, the system reaches the steady state. The equilibrium dis-
tribution of fluid density on the graph is fs = L−1

γ bs (see [33]). Note that this
diffusion process is related to the diffusion kernel [24], or heat kernel [6], which
models the diffusion of heat on a graph, and these diffusion processes are also
related to certain random walks on graphs [9,27]. Diffusion processes and their
related flow problems have been used in protein function prediction on inter-
action networks [37,29] and to define associations between gene expression and
phenotype [28].

We interpret fs
i as the influence of gene gs on gene gi. Computing the diffusion

process for all tested genes gives us, for each pair of genes gj, gk ∈ T , the influence
i(gj, gk) that gene gj has on gene gk. Note that in general the influence is not
symmetric; i.e. i(gj, gk) &= i(gk, gj). We define an influence graph GI = (T , EI)
with the set of nodes corresponding to the set of tested genes, the weight of an
edge (gj , gk) is given by w(gj , gk) = min[i(gk, gj), i(gj , gk)]. If n is the number of
nodes in the interaction network, then the cost of computing GI is dominated
by the complexity of inverting an n × n matrix.

2.3 Discovering Significant Subnetworks: Combinatorial Model

Given an influence measure between genes, the obvious first approach for discov-
ering significant subnetworks is to identify sets of nodes in the influence graph
1 L = −A + D, where A is the adjacency matrix of the graph and D is a diagonal

matrix with Di,i = degree(vi).
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GI that are (1) connected through edges with high influence measure; and (2)
correspond to mutated genes in a significant number of samples. We fix a thresh-
old δ and compute a reduced influence graph GI(δ) of GI by removing all edges
with w(gi, gj) < δ, and all nodes corresponding to genes with no mutations
in the sample data. The computational problem is reduced to identifying con-
nected subgraphs of GI(δ) such that the corresponding set of genes is altered in
a significant number of patients.

The size of the connected subgraphs we discover is controlled by the threshold
δ. We choose sufficiently small δ such that in the null hypothesis, in which the
mutations are randomly placed in nodes corresponding to tested genes, it is
unlikely that our procedure finds connected subgraphs with similar properties.
Note that value of δ depends only on the null hypothesis and not on the observed
sample data (see Section 2.5 for details of the statistical analysis). Finding the
connected subgraph of k genes that is mutated in the largest number of samples
requires to solve the following problem, that we define as connected maximum
coverage problem.

Computational Problem. Given a graph G defined on a set of m vertices V , a
set of elements I, a family of subsets P = {P1, . . . , Pm}, with Pi ∈ 2I associated
to vi ∈ V , and a value k, find the connected subgraph C∗ = {vi1 , . . . , vik} with
k nodes in G that maximize | ∪k

j=1 Pij |. In our case we have G = GI(δ), V is
the subset of genes in T mutated in at least one sample, and for each gi ∈ V
the associated set is Si. The connected maximum coverage problem is related
to the maximum coverage problem (see e.g. [14] for a survey) where given a set
I of elements, a family of subsets F ⊂ 2I , and a value k, one needs to find a
collection of k sets in F that covers the maximum number of elements in I. This
problem is NP-hard as set cover is reducible to it.

If the graph G is a complete graph, the connected maximum coverage problem
is the same as the maximum coverage problem. Thus the connected maximum
coverage problem is NP-hard for a general graph. Moreover we prove that the
problem is still hard even on simple graphs such as the star graph ([35] gives a
similar result for the connected set cover problem).

Theorem 1. The connected maximum coverage problem on star graphs is NP-
hard.

Since the connected maximum coverage problem is NP-hard even for simple
graphs we turn to approximate solutions. It is not hard to construct a polynomial
time 1 − 1

e approximation algorithm for spider graphs (analogous to the result
in [35] for the connected set cover problem). Since it cannot be applied to the
network here, we construct an alternative polynomial time algorithm that gives
O (1/r) approximation when the radius of the optimal solution C∗ is r.

Our algorithm obtains a solution Cv (thus, a connected subgraph) starting
from each node v ∈ V , and then returns the best solution found. To obtain
Cv, our algorithm executes an exploration phase, i.e. for each node u ∈ G it
finds a shortest path pv(u) from v to u. Let #v(u) be the set of nodes in pv(u),
and Pv(u) the elements of I that they cover. After this exploration phase, the
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algorithm builds a connected subgraph Cv starting from v. At the beginning
we have Cv = {v}. PCv is the set of elements covered by the current connected
subgraph Cv. Then, while |Cv| < k, the algorithm chooses the node u /∈ Cv such
that: u = argmaxu∈V

{
|Pv(u)\PCv |
|#v(u)\Cv|

}
and |#v(u) ∪ Cv| ≤ K; the new solution

is then #v(u) ∪ Cv. The main computational cost of out algorithm is due to
the exploration phase, that can be performed in polynomial time. We have the
following:

Theorem 2. The algorithm above gives a 1
cr -approximation for the connected

maximum coverage problem on G, where c = 2e−1
e−1 and r is the radius of optimal

solution in G.

For our experiments we implemented a variation of this algorithm, that for
each pair of nodes (u, v) considers all the shortest paths between u and v, and
then keeps the one that maximizes |Pv(u)|

|#v(u)| to build the solution Cv. With this
modification the algorithm is not guaranteed to run in polynomial time in the
worst-case, but ran efficiently for all our experiments.

2.4 Discovering Significant Subnetworks: The Enhanced Influence
Model

We developed an alternative, computationally efficient, approach for identifying
subnetworks that are significant with respect to the gene mutation data. The
Enhanced Influence Model is based on the idea of enhancing the influence mea-
sure between genes by the number of mutations observed in each of these genes,
and then decomposing an associated enhanced influence graph into connected
components.

We define the enhanced influence graph H . It has a node for each gene gj

with at least one mutation in the data. The weight of edge (gj , gk) in H is given
by h(gj, gk) = min {i(gj , gk), i(gk, gj)} × max {|Sj |, ||Sk|}. Thus, the strength of
connection between two nodes in the enhanced influence graph is a function
of both the interaction between the nodes in the interaction network and the
number of mutations observed in their corresponding genes. Next we remove all
edges with weight smaller than a threshold δ to obtain a graph H(δ). We return
the connected components in H(δ) as the significant subnetworks with respect to
the mutation data and the threshold δ. The computational cost is the complexity
of computing all connected components in a graph with |S| nodes (number of
mutated genes), which is linear in the size of the graph. The significance of the
discovered subnetworks depends on the choice of δ. We choose sufficiently small
δ such that in the null hypothesis, in which the mutations are randomly placed
in nodes corresponding to tested genes, it is unlikely that our procedure finds
connected components of similar size (see Section 2.5 for details).

2.5 Statistical Analysis

We assess the statistical significance of our discoveries with respect to null hy-
pothesis distributions in which the mutated genes are randomly allocated in the
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network, i.e. when the occurrence of mutations are independent of the network
topology. We consider two null hypothesis distributions: in Hsample

0 a total of
m =

∑
i |Mi| mutations are placed uniformly at random in the nodes corre-

sponding to the |T | tested genes. While easier to analyze, this model does not
account for the fact that in the observed data a large number of mutations are
concentrated in a few genes(e.g. TP53). Thus, we also use a second null hypothe-
sis distribution, Hgene

0 , generated by permuting the identities of the tested genes
in the network. That is we select a random permutation σ of the set {1, . . . , |T |},
and we assign gene gj , that was mutated in the set of samples Sj ⊆ S, to the
location of gene gσ(j) in the original network.

A Two Stage Multi-Hypothesis Test. A major difficulty in assessing the sta-
tistical significance of the discovered subnetworks is that we test simultaneously
for a large number of hypotheses; each connected subnetwork in the interaction
graph with at least one tested gene is a possible significant subnetwork and thus
an hypothesis. The strict measure of significance level in multi-hypothesis test-
ing is the Family Wise Error Rate (FWER), the probability of incurring at least
one Type I error in any of the individual tests. An alternative, less conserva-
tive approach to control errors in multiple tests is the the False Discovery Rate
(FDR) [3]. Let V be the number of Type I errors in the individual tests, and
let R be the total number of null hypotheses rejected by the multiple test. We
define FDR = E[V/R] to be the expected ratio of erroneous rejections among all
rejections (with V/R = 0 when R = 0). Let h be the total number of hypothesis
tested. Applying either measure to our problem, a discovery would be flagged as
statistically significant only if its p-value is O (1/h), which is impractical in the
size of our problem. Instead, building on an idea presented in [23], we develop a
two stage test for our problem that allows us to flag a number of subnetworks in
our data as statistically significant with small false discovery rate (FDR) values.

We demonstrate our method through the analysis of the Enhanced Influ-
ence model. A similar technique was applied to the Combinatorial model. Let
C1, . . . , C# be the set of connected components found in the enhanced influence
graph H(δ). Testing for the significance of these discoveries is equivalent to si-
multaneously testing for 2|T | hypothesis. To reduce the number of hypothesis we
focus on an alternative statistic: the number of discoveries of a given size. Let r̃s

be the number of connected components of size ≥ s found in the graph H(δ), and
let rs be the corresponding random variable in the null hypothesis (Hsample

0 or
Hgene

0 ). We are testing now for just K = |T | simple hypotheses, for s = 1, . . . ,K:
Es ≡ “r̃s conforms with the distribution of rs”. Testing each hypothesis with
confidence level α/K, the first stage of our test identifies the smallest size s such
that with confidence level α we can reject the null hypothesis that r̃s conforms
with the distribution of rs.

The fact that the number of connected components of size at least s is statis-
tically significant does not imply necessarily that each of the connected compo-
nents is significant. We now add a second condition to the test that guarantees
an upper bound on the False Discovery Rate (FDR):
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Theorem 3. Fix β1,β2, . . . ,βK such that
∑K

i=1 βi = β. Let s∗ be the first s such
that r̃s ≥ E[rs]

βs
. If we return as significant all connected components of size ≥ s∗,

then the FDR of the test is bounded by β.

In our tests we have used βi = β
2i for the ith largest s tested (with βs = β −∑

i βi for the smallest s), since we are more interested in finding large connected
components.

Estimating the Distribution of the Null Hypothesis. The null hypothesis
distributions can be estimated by either a Monte-Carlo simulation (“permutation
test”) or through analytical bounds.

Using Monte-Carlo simulation, two features of our method significantly reduce
the cost of the estimates. First, the Influence Graph GI is created without ob-
serving the sample data. The mutation data and GI are then combined to create
the sample dependent graphs GI(δ) and H(δ). Thus, the Monte Carlo simulation
needs to run on the graph GI which is significantly smaller than the original in-
teraction network (in our data the original interaction network had 18796 nodes
while the influence graph had only about 600 nodes). Second, our statistical test
does not use the p-values of individual connected subgraphs/components but the
p-value of the distribution of the number of connected subgraphs/components
of a given size. Thus, for this test it is sufficient to estimate p-values that are a
magnitude larger, and therefore require significantly fewer rounds of simulations.
These features allowed us to compute the null distributions through Monte-Carlo
simulations for the size of our data with no significant computational cost. For
larger number of tested genes we can estimate the null hypothesis through ana-
lytical bounds.

3 Experimental Results

We applied our approach to analyze somatic mutation data from two recent
studies. The first dataset is a collection of 453 somatic mutations identified in
601 tested genes from 91 glioblastoma multiforme (GBM) samples from The
Cancer Genome Atlas [31]. In total, 223 genes were reported mutated in at
least one sample. The second dataset is a collection of 1013 somatic mutations
identified in 623 tested genes from 188 lung adenocarcinoma samples from the
Tumor Sequencing Project [8]. In total, 356 genes were reported mutated in at
least one sample. For the Enhanced Influence model we also considered simulated
data.

We use the protein interaction network from the Human Protein Reference
Database (June 2008 version) [22] which consists of 18796 vertices and 37107
edges. We derive the influence graph for each dataset by directly computing the
inverse2 of Lγ . The results presented below are obtained by fixing the parameter
γ = 8, which is approximately the average degree of a node in HPRD (after the
2 In contrast [33] derive a power series approximation to L−1

γ whose convergence de-
pends on the choice of γ.



Algorithms for Detecting Significantly Mutated Pathways in Cancer 515

removal of disconnected nodes). We also considered γ = 1 and γ = 30: in both
cases the results obtained are close to the ones obtained with γ = 8.

The resulting influence graphs have weights i(gj , gk) &= 0 for almost all pairs
(gj , gk) of tested genes: less than 2% of the weights are zero in the GBM
graph, while all weights in the lung adenocarcinoma graph are positive. Supple-
mentary tables are available at http://www.cs.brown.edu/people/braphael/
supplements/.

3.1 Combinatorial Model

We used the combinatorial model to extract a subnetwork of k mutated genes
that is mutated in the highest number of samples from GBM and lung adeno-
carcinoma with k = 10 and k = 20. For both datasets we used the procedure
described in Section 2.3 to derive the threshold δ = 0.0001 for the reduced influ-
ence graph GI(δ). Table 1 shows that we find statistically significant subnetworks
under both the Hgene

0 and Hsample
0 null hypotheses (p-values for Hsample

0 are com-
puted without Monte-Carlo simulation). To assess the biological significance of
our findings in GBM, we compared the genes in each subnetwork to the genes
in pathways that were previously implicated in GBM and used as a benchmark
in the TCGA publication [31] (See also Figure 2 (a) below). We find that our
subnetworks are enriched for genes in the RTK/RAS/PI(3)K pathway and to a
lesser extent, the p53 pathway. For the lung adenocarcinoma samples, we find
that the subnetworks share significant overlap with the pathways reported in the
original publication [8]. These results demonstrate that the combinatorial model
is effective in recovering genes known to be important in each of these cancers.

3.2 Enhanced Influence Model

Simulated Data. We tested the ability of our enhanced influence model to recover
significantly mutated pathways in simulated data. We extracted a well-curated
network of 258 genes called “Pathways in cancer (hsa05200)” from the KEGG
database [20]. We augmented this network with additional random edges so that
20% of the edges of the resulting network were random. We assigned mutations
to a well-known cancer signaling pathway, PKC -RAF - MEK - ERK, a linear
chain P of 4 genes, so that at least one gene is mutated in x% of samples, for
different x. We then randomly assigned mutations to all the genes in the network
matching the observed values (e.g. number of samples, ratio between number of
tested genes and number of genes in the network, etc.) We correctly identify
P as significantly mutated (P < 10−2, FDR < 10−2) even when each gene in
P is altered in ≤ 5% of the samples, but P is altered in 17% of the samples.
Note that genes mutated in 5% of the samples were not reported as significantly
mutated in [31], demonstrating that our method correctly identifies a mutated
path even when the individual genes in the path are not mutated in a significant
number of samples. Moreover, P is the only significant pathway reported by our
method. To verify that our influence measure takes into account the topology of
the network, we added a number of edges to the RAF gene in P , giving it high
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Table 1. Results of the combinatorial model. k is the number of genes in the subnet-
work. samples is the number of samples in which the subnetwork is mutated. p-val is
the probability of observing a connected subgraph of size k under the random model
Hsample

0 or Hgene
0 . enrichment p-val is the p-value of the hypergeometric test for over-

lap between genes in the identified subgraph and genes reported significant pathways
in [31] or [8]. For GBM, enrichment p-val is the p-value of the hypergeometric test for
RTK/RAS/PI(3)K and p53 pathways.

p-val pathway enrichment p-val
dataset k samples Hsample

0 Hgene
0 all RTK/RAS/PI(3)K p53

GBM 10 67 < 10−10 4 × 10−3 3 × 10−4 8 × 10−4 0.19
20 78 < 10−10 < 10−3 10−5 8 × 10−5 0.05

Lung 10 140 < 10−10 0.02 8 × 10−6 /
20 151 < 10−10 0.03 3 × 10−3 /

degree in the network. As expected, P is no longer identified as significant in the
modified network.

Real data. We applied the enhanced influence model to the GBM and lung ade-
nocarcinoma datasets. Following the procedure described in Section 2.4, we first
computed the enhanced influence network, using a threshold of δ = 0.003 for
the GBM data and δ = 0.01 for the lung adenocarcinoma data. Table 2 shows
the number and sizes of the connected components identified in the GBM data,
and the associated p-values, the latter obtained using the method described in
Section 2.5. We identify two significant connected components with more than
19 genes (FDR ≤ 0.14). We find significant overlap (P < 10−2 by hypergeomet-
ric test) between the 68 genes in our connected components and the set of all
mutated genes in the same RTK/RAS/PI(3)K, p53, and RB pathways examined
in the TCGA study [31]. The second largest connected component with 19 genes
has significant overlap to the p53 pathway, while the largest connected compo-
nent with 22 genes has significant overlap with the RTK/RAS/PI(3)K signaling
pathway. In contrast to the combinatorial model, the enhanced influence model
separates these two pathways into different connected components. Figure 2 (a)
illustrates the overlap between the mutated genes in connected components re-
turned by our method and genes in the pathways reported in [31].

For the lung data, Table 3 shows the sizes of connected components returned
by the enhanced influence model and the p-values associated with each. The 88
genes in the union of the connected components derived by our method over-
lap significantly (P < 7 × 10−9 by the hypergeometric test) with the mutated
pathways reported in the network of Figure 6 in the TSP publication [8]. We
identify 4 connected components of size ≥ 7 (FDR ≤ 0.56). The first connected
component of size 10 contains genes in the p53 pathway, and the second one is en-
riched (P < 10−2) for the MAPK pathway (Figure 2 (b)). The third component
is the ephrin receptor gene family, a large family of membrane-bound receptor
tyrosine kinases, that were reported as mutated in breast and colorectal cancers
[36]. Notably, only one of the genes in this component, EPHA3, is mentioned as
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Table 2. Results of the enhanced influence model on GBM samples. s is the size of
connected components (c.c.) found with our method. # c.c. ≥ s is the number of c.c.
with at least s nodes. µ is the expected number of c.c. with ≥ s nodes under random
models Hgene

0 , Hsample
0 . p-val is the probability of observing at least # c.c. ≥ s with

at least s nodes in a random dataset. The last 3 columns show, for c.c. with s > 3,
the result of the hypergeometric test for enrichment for RTK/RAS/PI(3)K, and p53
pathways respectively.

Hsample
0 Hgene

0 enrichment p-val
s # c.c. ≥ s µ p-val µ p-val RTK/RAS/PI(3)K p53
2 15 22.18 0.97 13.63 0.38 / /
3 3 6.37 0.98 4.38 0.6 / /
19 2 < 10−3 < 10−3 0.07 < 10−3 0.9 4 × 10−3

22 1 < 10−3 < 10−3 0.05 0.05 4 × 10−6 –

(a)

(b)

(c)

Fig. 2. (a) Overlap between subnetworks found by the enhanced influence model and
significant pathways reported in [31]. Each circle is a gene, gray nodes represents protein
families or complexes, or small molecules. For each protein family and complex, tested
genes are shown. “Dashed” nodes are tested genes that were not mutated in GBM,
and thus cannot be returned as significant. Red nodes are found in the c.c. of size 22,
blue nodes in the c.c. of size 18, and the green node in a c.c. of size 2. (b) Pathway
corresponding to one of the connected components extracted with enhanced influence
model in lung. (c) Notch signaling pathway identified in the lung dataset.

significantly mutated in [8]. Finally, the connected component of size 7 consists
exclusively of members of the Notch signaling pathway (Figure 2 (c)). The mu-
tated genes include: the Notch receptor (NOTCH2/3/4); Jagged (JAG1/2), the
ligand of Notch; and Mastermind (MAML1/2), a transcriptional co-activator of
Notch target genes. The Notch signaling pathway is a major developmental path-
way that has been implicated in a variety of cancers [1] including lung cancer
[7]. Mutations in this pathway were not noted in the original TSP publication
[8], probably because no single gene in this pathway is mutated in more than
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Table 3. Results of the enhanced influence model on lung adenocarcinoma samples.
Columns are as described in Table 2. Last column shows, for c.c. with s ≥ 7, the result
of the hypergeometric test for enrichment all genes reported in significant pathways in
[8] (the 3 values shown refers to c.c. of size 10).

Hsample
0 Hgene

0

s # c.c. ≥ s µ p-val µ p-val enrichment p-val
2 24 23.4 0.7 17.67 0.4 /
3 11 6.51 0.13 7.27 0.2 /
4 7 3.21 0.07 4.98 0.13 /
5 5 2.09 0.01 2.18 0.01 /
7 4 0.54 0.01 0.56 0.01 –
10 3 < 10−3 < 10−3 0.4 0.02 0.34; 10−5; 9 × 10−8

3 samples. Because our method exploits both mutation frequency and network
topology, we are able to identify these more subtle mutated pathways, and in
this case identify an entire “signaling” circuit.

3.3 Näıve Approach

To demonstrate the impact of the influence graph on the results, we implemented
a näıve approach that examines all paths in the original HPRD network that
connect two tested genes and contain at most 3 nodes. We extracted all paths
that were altered in a significant number of samples with FDR ≤ 0.01 using the
standard Benjamini-Yekutieli method [4]. More than 1700 paths in GBM and
> 2200 in lung adenocarcinoma are marked as significant with this method. A
major reason for this large number of paths is the presence of highly mutated
genes that are also high-degree nodes in the HPRD network (e.g. TP53). Each
path through these high degree nodes is marked as significant. One possible
solution is to remove any path that contains a subpath that is significant How-
ever, these filtered paths include none through important highly-mutated and
high degree genes (like TP53). Our influence graph uses both mutation frequency
and local topology of the network, allowing us to recover subnetworks containing
these genes. Finally, we note that finding larger, statistically significant subnet-
works (e.g. those with 10 or 20 nodes) with the näıve approach is impossible in
the GBM and lung datasets because of the severe multiple hypotheses correc-
tion for the large number of subnetworks tested; e.g., the number of connected
components with 10 tested nodes in the HPRD network is > 1010. For the same
reason the enumeration of all the paths or connected components of reasonable
size is impossible.

4 Discussion

We present an approach to identify significantly mutated pathways in a large,
unannotated interaction network. The subnetworks derived by our method share



Algorithms for Detecting Significantly Mutated Pathways in Cancer 519

significant overlap with the known cancer pathways such as the manually curated
pathways in TCGA [31]. Remarkably, we automatically extracted a large frac-
tion of these pathways with modest number (100-200) of samples (Figure 2).
Our approach has two key advantages over the common strategy of testing the
overlap between mutated genes and genes from known pathways approach, us-
ing a hypergeometric or similar test. First, we incorporate biological information
that is not presently represented in existing well-characterized pathways, while
accounting for the uncertainty in large gene interaction networks. Second, we
are able to assign significance to genes that are altered at low frequency but
are part of a larger subnetwork that is altered at significant frequency. The lat-
ter advantage was demonstrated in the lung adenocarcinoma dataset where we
identify the Notch signaling pathway as significant, even though the individual
genes were not mutated at significant frequency.

We plan to extend our model in numerous directions, including: (i) inclusion
of other types of mutations such as copy number changes in genes, genome re-
arrangements, gene expression, or epigenetic alterations; (ii) extension of the
interaction network to include additional interaction types (e.g. regulatory or
miRNA) as well as directed interactions (activating vs. inhibitory); (iii) consid-
eration of errors in the interaction network. The later can be included naturally
in our diffusion model by adding weights, or reliabilities, on the edges. Moreover,
we have adapted our model to take into account the length of the genes in the
network, weighting the frequency of mutation in a gene by its length. The results
obtained for the GBM and lung adenocarcinoma data are extremely close to the
one presented here (data not shown).

We anticipate that our method will become even more useful as larger datasets
become available. Several recent studies [40,18,32] have surveyed a much larger
number of genes than considered here (approximately 20,000), but in a relatively
small number of samples (1-2 dozen per cancer type). Continuing decline in se-
quencing costs and the development of targeted exon-capture techniques [15] will
soon enable global surveys of all protein-coding genes in hundreds to thousands
of cancer samples.
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